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SEPARATION SCIENCE, 6(3), pp. 345-356, June, 1971 

Resolution and Peak Capacity 
in Equilibrium-Gradient Methods of Separation 

J. CALVIN GIDDINGS and KARIN DAHLGREN 
DEPARTMENT OF CHEMISTRY 

UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 84112 

Summary 

A theoretical analysis is made of the relative resolving power of 
equilibrium-gradient separation methods, such as isoelectric focusing 
and density-gradient sedimentation, and the corresponding kinetic 
methods, such as electrophoresis and kinetic centrifugation. Both general 
and specific equations are derived for resolution and peak capacity. 
It is concluded that peak capacity, the most general index of over-all 
resolving power, is of comparable magnitude for these two different 
approaches. 

Two new equilibrium-gradient methods of separation are proposed, 
these employing dielectrical and thermal diffusion forces, respectively. 

Parameters such as the “rate of generation of variance,” or “plate 
height,” du2/dZ, “peak capacity,)’ and “resolution” have been used 
extensively in the characterization of chromatographic systems. Al- 
though these parameters have found most use in gas and liquid 
chromatography as well as in gel permeation chromatography, their 
importance is more universal. Giddings (1 )  discussed their usefulness 
for characterizing and comparing the efficiency of separation methods 
as different as ultracentrifugal sedimentation and electrophoresis. In  
both cases separation is achieved through the introduction of an 
external field giving rise to forces acting on the particles and leading 
to a steady differential migration. 

I n  this work we would like to  extend the use of some of these 
characteristic separation parameters to encompass a general class of 
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346 J. C. GlDDlNGS AND K. DAHLGREN 

equilibrium-gradient methods. These methods are exemplified by 
isoelectric focusing (2) and density-gradient (isopycnic) sedimenta- 
tion ( 3 ) .  We will compare the intrinsic resolving power of such 
methods with their kinetic counterparts. 

An equilibrium-gradient method, as the term is used here, denotes 
a method in which a gradient or combination of gradients causes each 
species to seek an equilibrium position along the separation path. At 
the equilibrium point the net force on a particle (molecule) is zero 
as shown in Fig. 1. Any deviation from this position caused by 
diffusion, etc., gives rise to a restoring force which thereby tends 
to keep the concentration pulse focused in a narrow region around the 
equilibrium point. 

EQUILIBRIUM 
POINT 

I 

FIG. 1. Force vs. distancc and the formation of a zone in an equilibrium- 
gradient separation system. 

In  practice equilibrium-gradient methods utilize a primary gradient 
(e.g., an electrical or “gravitational” potential), which is the same 
as in the corresponding kinetic method. Superimposed is a secondary 
gradient in some property (usually pH or density) which, in combina- 
tion with the primary gradient, causes a reversal in the force at  a 
given point. For example, the force per mole on a charged particle is 
qsh’, where q is the effective charge, 5 the faraday of electricity, 
and E the electric field strength. The latter is relatively constant and 
represents the primary gradient in electrical potential. Effective charge 
q is made to vary and, most importantly, to reverse sign at some point, 
by the secondary pH gradient. 

Methods other than those employing electrical and centrifugal 
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EQUILIBRIUM-GRADIENT METHODS OF SEPARATION 347 

forces are conceivable. We propose here two other possibilities. (a) 
I n  a strongly nonuniform electrical field, uncharged species with high 
dielectric constants migrate selectively to the high field regions. If 
a secondary gradient in the dielectric constant were imposed (such 
a gradient would occur naturally in an appropriate solvent mixture), 
each species would seek equilibrium a t  a point where the dielectric 
constant of the medium equaled its own. Components would thus 
separate according to differences in dielectric constant. This method 
would be applicable only to very large species. (b) The fractionating 
power of thermal diffusion could be used by employing a solvent 
mixture which, by its own partial separation, would reverse the sign 
of the thermal diffusion factor for each species at  some point. The 
point of reversal would be the equilibrium point. 

While the dielectric and thermal fields proposed above are intrinsi- 
cally weaker than electrical or centrifugal fields, the possibility of 
their use, perhaps under special circumstances, illustrates the broad 
generality of the equilibrium-gradient class of separations. 

THEORY 

We will first prove that the zonal shape for static equilibrium is 
approximately Gaussian. This has been shown earlier for the individ- 
ua! cases of density gradient centrifugation (3) and isoelectric 
focusing ( 2 ) .  Here we give a proof for the general case without 
introducing specific conditions. The desired general expression for 
the standard deviation, a, will then be used to obtain values for 
resolution and peak capacity. 

The force per mole acting on a species in a gradient field is, of 
course, a function of position z ,  F ( z ) .  At the equilibrium point, z = Z,, 
the force vanishes. F ( z )  can be described by a Taylor expansion 
about this point 

(2 - 2,)Z + . . . (1) 
1 dZF(2) 

+ z [ F 1 z - z .  
in which F(Z, )  = 0, as stated above. Terms of 
order may be assumed negligible for narrow zones. 

second and higher 
Therefore 
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348 J. C. GlDDlNGS AND K. DAHLGREN 

If we let 

k = - [dF(z) /dz] , , z ,  (3) 

F(z’) = -kz’ (4) 

and transform to the coordinate system z’ = z - Z,, Eq. (2) becomes 

which is simply a Hooke’s law force with k the effective Hooke’s law 
constant. The potential energy (equivalent to the chemical potential) 
in this Hookian well is lcd2/2. Using this in the Boltamann term gives 
the concentration relative to that a t  the equilibrium point 

(C/C, )  = exp( - ~ Z ’ ~ / R T )  ( 5 )  

u = (RT/k)a (6) 

This is a Gaussian distribution with standard deviation 

This is the general expression needed for the study of resolution 
and peak capacity, below. 

PLATE HEIGHT 

Plate height is defined as H = duz/dZ for normal chromatography, 
sedimentation, and electrophoresis (1 ) .  However, with equilibrium- 
gradient methods, variance u2 is not generated in proportion to dis- 
tance 2 migrated, so the proportionality represented by H makes 
little sense in this case. With the former techniques plate height H 
and the number of plates N are useful stepping stones to resolution 
and peak capacity. Here we proceed directly to these parameters. 

RESOLUTION 

Resolution Rs for two peaks is defined as AZ/4a, where A 2  is the 
distance between peak centers and 5 is the average standard deviation 
in width of the two peaks. For closely related substances, the two a’s 
will be approximately equal so that 3 may be replaced by either 
individual U.  This step aids mathematical simplification. 

The use of u from Eq. ( 6 )  in the above expression for Rs yields 

AZ 
4( RT/lc) + 

Rs = (7) 

This can be rearranged to give 
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EQUILIBRIUM-GRADIENT METHODS OF SEPARATION 349 

Rs = - 1 (-) AE ’ 
2 2RT 

where AZ is defined by 

AE = $k(AZ) ’  (9) 

and, in view of the discussion following Eq. (4), is the energy needed 
to displace a species from its own equilibrium position to that of its 
neighbor. Thus Rs is determined by the ratio, Ac/RT, of two energies, 
a displacement energy A€ and thermal energy RT. This type of ratio 
appears also in the kinetic methods, particularly in describing the 
number of theoretical plates. 

We may now inquire into the general effect of changing the steepness 
of the secondary gradient. If there is an M-fold increase in gradient, 
there will be correspondingly an M-fold increase in the force a t  any 
point and thus an M-fold increase in the Hookian force constant k. 
The distance between peak centers AZ will, on the other hand, change 
with M-l, since increasing steepness will bring the peaks together. 
The net effect on AZ of this M-fold gradient increase is therefore a 
change by a factor of M ( M - l ) *  = M-l. Therefore, Rs, which Eq. (8) 
shows to depend on (Ac)’ /~ ,  will change by M-”. In  summary, resolu- 
tion is inversely proportional to the square root of the gradient. While 
narrow peaks are obtained in steep gradients, they become crowded 
together to more than an offsetting degree. 

Density-Gradient Sedimentation 

In  the particular case of density-gradient sedimentation, the force 
is given by 

F ( z )  = ( P  - PO)VG (10) 

where G is the centrifugal acceleration, 0 2 z ,  V the molar volume, and 
p and po the densities of the entrained species and of the solvent, 
respectively. A gradient exists in the latter. The force constant, defined 
by Eq. (3), becomes 

k = VG dpoldz (11) 

Az = AP/(dPO/dZ) (12) 

The distance between peak centers is 
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350 J. C. GlDDlNGS AND K. DAHLGREN 

i.e., i t  is the distance in which the density increment due to the 
gradient equals Apt the density difference of the two components. The 
substitution of these two expressions into Eq. (7) yields 

an equation which gives the explicit conditions necessary for unit 
resolution. Such an equation has not heretofore been available for 
density-gradient sedimentation. 

Equation (13) can be used to predict the resolvability of biological 
species under a given set of experimental conditions, provided their 
densities and molar volumes are known. As an illustration of this, 
we can apply the resolution expression to  the classical separation of 
isotopically labeled and unlabeled E .  coli DNA performed by Meselson 
and Stahl ( 4 ) .  The density difference between the two types of DNA 
is Ap = 0.014 g/cm3, the density of unlabeled DNA being 1.710 g/cm3. 
The molecular weight in CsCl solution was determined as 9.4 x 
lo6 for N14DNA, which gives V = 9.4 X 106/1.71 cm3. Quantity G 
in the experiment was 140,OOOg and RT = 2500 Joule/mole or in 
CGS units 25 X lo9 ergs/mole a t  the ambient temperature. Assuming 
a gradient dp,/dz = 0.08 g/cm4, we can predict from Eq. (13) a 
resolution, Rs = 2.2. The measured value, from Fig. 2b of their paper, 
is 1.5. The accord is good in view of the fact that any imperfection 
in the system will detract from the theoretical limit, 2.2. 

lsoelectric Focusing 

mentioned earlier, is 
In  the case of isoelectric focusing the basic force equation, as 

F = qSE (14) 
There are equivalent forms involving the zeta potential. Force constant 
k from this and Eq. (3) becomes 

Peak separation nZ is obtained as 

A 2  = ~ p H / ( d p H / d ~ )  (16) 
where A ~ H  is the isoelectric pH increment between the two com- 
ponents. The substitution of these two expressions in Eq. (7) gives 
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EQUILIBRIUM-GRADIENT METHODS OF SEPARATION 351 
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The tangent line in Fig. 2 shows dq/dpH = -9 at the isoelectric 
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352 J. C. GlDDlNGS AND K .  DAHLGREN 

point. If we assume a pH gradient of 0.05 pHJcm and a field of 25 
V/cm, Eq. (17b) yields upH = 2.4 x The total peak would be 
spread over about 4uPH or about pH units. Since observable 
deviations from linearity do not occur in less than one or two pH 
units, the effect of nonlinearity is negligible. 

neighboring peaks 
can be resolved if their isoelectric points differ by only 0.01. This 
can be confirmed directly from Eq. (17) by noting that a unit resolu- 
tion is obtained using the above parameters. 

Since peak width in pH units is typically 

PEAK CAPACITY 

Peak capacity, n, is the maximum number of components resolvable 
by a given technique under specified conditions. If component peaks 
of average width 4a are distributed over path length L, the peak 
capacity is clearly 

n = L/45 (18) 
From Eq. (6) ,  a = (RT)l/z(l/k)l/z, a term that can be replaced by 
(RT)'/z(l/k)'/~, where k is the average denoted by 1/[ ( l /k) ' /~]~ .  The 
peak capacity thus becomes 

This equation shows that peak capacity increases in proportion to 
total path length L and with the square root of the secondary gradient 
as reflected in k. 

If we define the term 4E by analogy to the definition of AE in Eq. 
(9) , we have 

In terms of this energy parameter, the peak capacity from Eq. (19) 
takes the form 

n = (8g)1 
which, like Eq. (8 )  for resolution, involves a ratio of energy terms. 
The ratio of n to Rs can be shown, using Eqs. (8),  (9),  (20), and (21), 
to have the simple form, L/AZ. 

More importantly, for it encourages the comparison of equilibrium- 
gradient and kinetic methods, Eq. (21) resembles closely the equation 
for peak capacity in the kinetic case 
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EQUILIBRIUM-GRADIENT METHODS OF SEPARATION 353 

where in this case the energy term, -Apmaxl is the chemical potential 
or energy change of a species migrating the full path length L under 
the influence of the primary field. Below we seek to compare --Apmax 
and AE since this permits the direct comparison of peak capacities by 
the two basic methods. 

We postulate a model system with a uniform gradient throughout. 
Thus the force is a linear function of distance for each component. 
The force curve for the component whose equilibrium location is a t  
position L is shown in Fig. 3 as the diagonal line which, of course, 
reaches zero at  equilibrium point L. The slope of the line is --k, as 
shown by Eq. (3).  The shaded triangular area, which represents the 
energy drop of the species in moving from the origin to L, is seen by 
the figure geometry to be s k L Z .  This, of course, is aE. 

kL 

I 
I 

I\. 

J 

DISTANCE - i 
FIG. 3. Comparison of force vs. distance plots for kinetic and 

equilibrium-gradient methods. 

The same component separated by a kinetic method would have a 
uniform force throughout, represented by the upper horizontal line. 
(The two lines under optimum conditions will begin a t  the same point 
since the highest point available will provide in one case the maximum 
gradient and in the other case the maximum force.) The energy (or 
chemical potential) drop of the component moving from the origin to 
L under this circumstance would be simply the rectangular area on the 
plot, --ApmaX = kL2. Thus we have the approximation 
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354 1. C. GlDDlNGS AND K. DAHLGREN 

-Apmax = 2AE (23) 

n = d % k i n  n k i n  (24) 

The comparison of Eqs. (21) and (22) now yields 

which shows the peak capacity to  be the same order of magnitude 
whether equilibrium-gradient or kinetic methods are used. 

The foregoing comparison hinges on the linear model, the validity 
of which we will discuss shortly, and on a particular chemical potential 
model, Case a of Ref. 1, which leads to Eq. (22).  However, it was 
shown in the last-named reference that the final result is not strongly 
dependent on the model chosen. 

Density-Gradient Sedimentation 

The combination of Eqs. (11) and (19) yields 

where, of course, V ,  and to a lesser extent G and dpo/dz, are appropri- 
ate averages. An alternate form is obtained by replacing L dpo/dz by 
[ p o L  - p o o l ,  the total density increment of the solvent over the separa- 
tion path. This substitution gives 

VGL [POL - pool 
n =  ( 16RT 

The ratio of n to Rs, as shown by combining this equation with Eq. 
(13),  is the simple density ratio, [poL - poo ] /Ap .  

From Eq. (25) we can estimate approximately the number of 
resolvable components in a certain cell with a certain steepness of the 
density gradient. Assuming V = 6 x lo6 cm3, G = 105,00Og, dpo/dz = 
0.05 g/cm4, RT = 25 x lo9 ergs/mole and a cell length, L, of 1.5 cm, 
Eq. (25) predicts a peak capacity of n = 13. Note, however, that this 
rapidly becomes smaller as molecular size decreases. 

lsoelectric Focusing 

Here one combines Eqs. (15) and (19) to get 

--SE(dg/dpH) (dpH/dz)L2 
n = (  16RT (27) 
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EQUILIBRIUM-GRADIENT METHODS OF SEPARATION 355 

where dq/dpH is the appropriate average. The alternate form is 
obtained by replacing L dpH/dz by [pH, - pHo],  the total pH incre- 
ment. In  this case we have 

n = (  16RT >' (28) 
-Sh'(dg/dpH)L[pH~ - pH01 

The uniform-gradient model is approximate for isoelectric focusing 
because dq/dpH is not constant, as seen in Fig. 2. This does not affect 
the above two equat,ions, but does alter the comparison of kinetic and 
equilibrium-gradient methods. The peak capacity of the former differs 
from our earlier estimate since -Apmax becomes k L 2 a / ( a  + b )  in 
place of kL2 ( a  and b are defined by Fig. 2) .  Thus the equation 

2aAE/(a + b)  (29) - ~ , m a x  = 

replaces Eq. (23).  However, since a and b will be of similar magnitude, 
the conclusion stated in Eq. (24)) that  peak capacities are comparable 
in value whether a kinetic (in this case electrophoresis) or equilib- 
rium-gradient (isoelectric focusing) method is used, is still valid. 

DISCUSSION 

The explicit formulas obtained here for resolution and peak capacity 
provide guidelines for achieving separations. Of equal importance, a 
meaningful comparison of the potential of kinetic and equilibrium- 
gradient methods has been made. The latter comparison merits addi- 
tional amplification. 

Although kinetic and equilibrium-gradient methods utilize the same 
primary fields (electrical or gravitational), they will not necessarily 
fractionate the same sample systems. The density gradient method, 
for example, will not fractionate solutes that  have different sizes but 
equal density, whereas the kinetic sedimentation method will fail for 
systems where the net force and frictional coefficient are proportional 
to one another. This basic difference in function must provide the 
initial criterion between the two methods. However, for solutes with a 
reasonably broad spectrum in properties, the total of resolvable peaks 
(the peak capacity n) provides a general criterion of over-all resolving 
power. Resolution does not provide such a criterion because i t  is 
specific for a particular pair and the answer depends on the detailed 
properties assumed for each component, the choice of which may arbi- 
trarily favor one method over the other. Therefore the peak capacity 
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356 J. C. GlDDlNGS AND K. DAHLGREN 

provides a general, and a t  the same time an experimentally meaning- 
ful, criterion of fractionation efficacy. 

It has been stated that the resolving power, at least in sedimenta- 
tion, is inherently better in kinetic than in equilibrium-gradient meth- 
ods (7) .  Conversely higher resolving power has been claimed for iso- 
electric focusing than for electrophoresis ( 5 ) .  Our own conclusion is 
that  the two approaches are generally comparable in resolving effec- 
tiveness for any of the basic primary fields. However, the important 
matter of resolution time, not considered in detail here, perhaps favors 
the kinetic methods. 
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